Disentanglement of constituent factors of a sensory signal is central to perception and cognition and hence is a critical task for future artificial intelligence systems. In this paper, we present a compute engine capable of efficiently factorizing holographic perceptual representations by exploiting the computation-in-superposition capability of brain-inspired hyperdimensional computing and the intrinsic stochasticity associated with analog in-memory computing based on nanoscale memristive devices. Such an iterative in-memory factorizer is shown to solve at least five orders of magnitude larger problems that cannot be solved otherwise, while also significantly lowering the computational time and space complexity. We present a large-scale experimental demonstration of the factorizer by employing two in-memory compute chips based on phase-change memristive devices. The dominant matrix-vector multiply operations are executed at O(1) thus reducing the computational time complexity to merely the number of iterations. Moreover, we experimentally demonstrate the ability to factorize visual perceptual representations reliably and efficiently.
translated by 谷歌翻译
从几个培训示例中不断学习新课程,而不忘记以前的旧课程需要一个灵活的体系结构,而不可避免地会增加部分存储,其中可以逐步存储并有效地检索新的示例和类。一个可行的架构解决方案是将固定的深神经网络紧密融合到动态发展的明确记忆(EM)。作为该体系结构的核心,我们提出了一个EM单元,该单元在持续学习操作过程中利用节能中的内存计算(IMC)核心。我们首次证明了EM单元如何使用基于IMC Core上的操作(PCM)上的IMC核心操作,在推理期间进行了多个训练示例,扩展以适应看不见的类并进行相似性搜索。具体而言,通过PCM设备的原位进行性结晶实现了一些编码训练示例的物理叠加。与不断学习的最新完整精确基线软件模型相比,IMC核心上达到的分类精度在1.28% - 2.5%范围内保持在2.5%之内。在60个旧课程的顶部,新颖的课程(每班只有五个示例)。
translated by 谷歌翻译
在小型电池约束的物流设备上部署现代TinyML任务需要高计算能效。使用非易失性存储器(NVM)的模拟内存计算(IMC)承诺在深神经网络(DNN)推理中的主要效率提高,并用作DNN权重的片上存储器存储器。然而,在系统级别尚未完全理解IMC的功能灵活性限制及其对性能,能量和面积效率的影响。为了目标实际的端到端的IOT应用程序,IMC阵列必须括在异构可编程系统中,引入我们旨在解决这项工作的新系统级挑战。我们介绍了一个非均相紧密的聚类架构,整合了8个RISC-V核心,内存计算加速器(IMA)和数字加速器。我们在高度异构的工作负载上基准测试,例如来自MobileNetv2的瓶颈层,显示出11.5倍的性能和9.5倍的能效改进,而在核心上高度优化并行执行相比。此外,我们通过将我们的异构架构缩放到多阵列加速器,探讨了在IMC阵列资源方面对全移动级DNN(MobileNetv2)的端到端推断的要求。我们的结果表明,我们的解决方案在MobileNetv2的端到端推断上,在执行延迟方面比现有的可编程架构更好,比最先进的异构解决方案更好的数量级集成内存计算模拟核心。
translated by 谷歌翻译
随着物联网(IOT)继续增长,确保依赖无线物联网设备的系统的安全性变得严重重要。最近介绍了基于深度学习的被动物理层发射机授权系统,因为它们适应了这些设备的有限计算和电源预算。这些系统已被证明在固定授权发射机集上培训和测试时提供出色的异常检测精度。然而,在实际部署中,由于授权的发射机变化,可能会出现需要添加和删除的发射机。在这种情况下,系统可能会长时间经历,因为培训潜在的深度学习模型通常是耗时的过程。在本文中,我们从信息检索中汲取灵感来解决这个问题:通过利用特征向量作为RF指纹,我们首先证明可以简化培训,以使用当地敏感散列(LSH)将这些特征向量索引到数据库中。然后,我们示出了可以在数据库上执行近似最近的邻居搜索,以执行与深度学习模型的准确性匹配的发射机授权,同时允许更快的再培训超过100倍。此外,在特征向量上使用维度降低技术,以表明我们的技术的授权延迟可以减少以接近基于深度学习的系统的方法。
translated by 谷歌翻译